Главная
Новости
Строительство
Ремонт
Дизайн и интерьер




27.01.2021


27.01.2021


27.01.2021


27.01.2021


27.01.2021





Яндекс.Метрика





Вторая космическая скорость

08.02.2021

Вторая космическая скорость (параболическая скорость, скорость освобождения, скорость убегания) — наименьшая скорость, которую необходимо придать стартующему с поверхности небесного тела объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него. Предполагается, что после приобретения телом этой скорости оно более не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по параболе относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой. Если чуть меньше, то она превращается в эллипс. В общем случае все они являются коническими сечениями.

Если тело запущено вертикально вверх со второй космической и более высокой скоростью, оно никогда не остановится и не начнёт падать обратно.

Эту же скорость приобретает у поверхности небесного тела любое космическое тело, которое на бесконечно большом расстоянии покоилось, а затем стало падать.

Впервые вторая космическая скорость была достигнута коcмическим аппаратом Луна-1 (СССР) 2 января 1959 года.

Вычисление

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем затем закон сохранения энергии

m v 2 2 2 − G m M R = 0 , {displaystyle {frac {mv_{2}^{2}}{2}}-G{frac {mM}{R}}=0,} R = h + r {displaystyle R=h+r}

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты, r — радиус планеты, h - длина от основания тела до его центра масс (высота над поверхностью планеты), G — гравитационная постоянная, v2 — вторая космическая скорость.

Решая это уравнение относительно v2, получим

v 2 = 2 G M R . {displaystyle v_{2}={sqrt {2G{frac {M}{R}}}}.}

Между первой и второй космическими скоростями существует простое соотношение:

v 2 = 2 v 1 . {displaystyle v_{2}={sqrt {2}}v_{1}.}

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке (например, на поверхности небесного тела):

v 2 2 = − 2 Φ = 2 G M R . {displaystyle v_{2}^{2}=-2Phi =2{frac {GM}{R}}.}

Вторая космическая скорость для различных объектов