Главная
Новости
Строительство
Ремонт
Дизайн и интерьер




27.01.2021


27.01.2021


27.01.2021


27.01.2021


27.01.2021





Яндекс.Метрика





Ним (игра)

29.05.2021

Ним — игра, в которой два игрока по очереди берут предметы, разложенные на несколько кучек. За один ход может быть взято любое количество предметов (большее нуля) из одной кучки. Выигрывает игрок, взявший последний предмет. В классическом варианте игры число кучек равняется трём.

Частный случай, когда кучка одна, но максимальное число предметов, которые можно взять за ход, ограничено, известен как игра Баше. Ним — конечная игра с полной информацией. Классическая игра Ним имеет фундаментальное значение для теоремы Шпрага — Гранди. Эта теорема утверждает, что обычная игра в сумму беспристрастных игр эквивалентна обычной игре в Ним. При этом каждой беспристрастной игре-слагаемому соответствует кучка Ним, число предметов в которой равно значению функции Шпрага — Гранди для игровой позиции данной игры.

История игры

Китайская игра ним упоминалась европейцами ещё в XVI веке. Имя «ним» было дано игре американским математиком Чарльзом Бутоном (англ. Charles Bouton), описавшим в 1901 году выигрышную стратегию игры. Существует несколько вариантов происхождения названия игры:

  • от немецкого глагола nehmen или от староанглийского глагола Nim, имеющих значение «брать»;
  • ананим от английского глагола Win («побеждать»).

Игрушка «Доктор Ним», небольшой шариковый компьютер, придуманный в 1960-х, играл не в ним, а в игру Баше.

Стратегия игры

В общем случае рассматривается p {displaystyle p} кучек предметов с N 1 , N 2 , ⋯ N p {displaystyle N_{1},N_{2},cdots N_{p}} предметами. Игроки ходят по очереди. Ход заключается в том, что игрок берёт из кучки i ∈ [ 1 , p ] {displaystyle iin [1,p]} n ∈ [ 1 , N i ] {displaystyle nin [1,N_{i}]} предметов. Каждой позиции игры ставится в соответствие ним-сумма этой позиции — результат сложения размеров всех кучек в двоичной системе счисления без учёта переноса разрядов, то есть сложение двоичных разрядов чисел в поле вычетов по модулю 2: S = N 1 ⊕ N 2 ⊕ ⋯ ⊕ N p {displaystyle S=N_{1}oplus N_{2}oplus cdots oplus N_{p}}

Выигрышная стратегия состоит в том, чтобы оставлять после своего хода позицию с ним-суммой, равной нулю. Она основана на том, что из любой позиции с ним-суммой, не равной нулю, можно одним ходом получить позицию с нулевой ним-суммой, а из позиции с нулевой ним-суммой любой ход ведёт в позицию с ним-суммой, отличной от нуля.

Пример: предположим, в игре три кучки, в них соответственно 2 (0010 в бинарном представлении), 8 (1000) и 13 (1101) предметов. Ним-сумма этой позиции — 7 (0111). Следовательно, выигрышная стратегия состоит в том, чтобы взять 3 предмета из третьей кучки — там останется 10 (1010) предметов, и ним-сумма позиции станет 0 (0000). Предположим, после вашего хода противник забирает все предметы из первой кучки — выигрышная стратегия будет заключаться в том, чтобы забрать 2 предмета из третьей кучки. В таком случае после вашего хода в кучках будет соответственно 0 (0000), 8 (1000) и 8 (1000) предметов, ним-сумма по прежнему будет равняться 0.


Шоколадка

Есть шоколадка m×n, одна долька «отравленная». Игрок своим ходом разламывает шоколадку по линии и съедает неотравленную часть. Проигрывает тот, кому останется отравленная долька. Игра эквивалентна ниму с четырьмя кучками.

Мизер

В этом варианте игрок, взявший последний объект, проигрывает. Выигрышная стратегия совпадает с выигрышной стратегией обычной игры до того момента, когда в результате хода игрока на столе должно остаться некоторое количество кучек с единственным предметом в каждой из них. В случае мизера игрок должен оставить нечётное количество кучек, тогда как выигрышная стратегия обычной игры требует оставить чётное количество кучек, чтобы ним-сумма равнялась нулю. Это можно сформулировать так: если осталась ровно одна кучка, содержащая более одного предмета, то забрать из неё все предметы или все кроме одного, чтобы осталось нечетное количество единичных кучек; иначе придерживаться выигрышной стратегии обычной игры.

Мультиним

Более общий случай игры Ним был предложен Элиакимом Муром. В игре N i m i {displaystyle Nim_{i}} игрокам разрешается брать предметы из максимум i {displaystyle i} кучек. Легко видеть, что обычная игра ним является N i m 1 {displaystyle Nim_{1}} . Для решения необходимо записать размеры каждой кучки в двоичной системе счисления и просуммировать эти числа в ( i + 1 ) {displaystyle (i+1)} -ичной системе счисления без переносов разрядов. Если получилось число 0, то текущая позиция проигрышная, иначе — выигрышная и из неё есть ход в позицию с нулевой величиной.

Форкед-ним

Еще один вариант игры был предложен Матвеем Бернштейном. В нем можно произвольно разбивать любую кучку на две произвольные кучки вместо хода. Во всем остальном игра ведется по обычным правилам.

В кино и телевидении

  • Эта игра служит метафорой происходящего в фильме «В прошлом году в Мариенбаде».