Главная
Новости
Строительство
Ремонт
Дизайн и интерьер




27.01.2021


27.01.2021


27.01.2021


27.01.2021


27.01.2021





Яндекс.Метрика





Кригинг

08.03.2021

В статистике, первоначально в геостатистике, кригинг или регрессия на основе гауссовских процессов — это метод интерполяции, для которого интерполированные значения моделируются гауссовским процессом, определяемым предыдущими ковариациями, в отличие от кусочно-полиномиального сплайна, оптимизирующего гладкость интерполируемых значений. Данный интерполяционный метод назван в честь южноафриканского горного инженера Дэниела Крига, занимавшегося ручным созданием геологических карт по ограниченному набору данных в некоторой области. Это вид обобщенной линейной регрессии, использующий статистические параметры для нахождения оптимальной оценки в смысле минимального среднеквадратического отклонения при построении поверхностей, кубов и карт. В основу метода положен принцип несмещенности среднего; то есть взятые все вместе значения на карте должны иметь правильное среднее значение. Глобальная несмещенность формально обеспечивается за счет повышения низких значений и уменьшения высоких.

При правильных выбранных априорных предположениях кригинг дает наилучшее линейное несмещенное предсказание промежуточных значений. Методы интерполяции, основанные на других критериях, таких как гладкость, не должны давать наиболее вероятных значений в промежуточных точках. Этот метод широко используется в области пространственного анализа и компьютерных (численных) экспериментах. Этот метод также известен как Wiener–Kolmogorov prediction в честь Норберта Винера и Андрея Николаевича Колмогорова.

С точки зрения общей статистики кригинг заключается в минимизации дисперсии ошибки измерения, которая является функцией от измеряемых весов. Минимизация данной дисперсии уменьшает среднюю квадратическую ошибку отклонения оцененного значения от возможного. Достигается это путём приравнивания к нулю первой производной ошибки относительно каждого неизвестного веса. В итоге выводится система уравнений, решением которой является вектор весов.

Кригинг выполняет две группы задач:

  • количественное определение пространственной структуры данных
  • создание прогноза
  • Количественое представление пространственной структуры данных, известное как построение вариограмм, даёт возможность пользователям подобрать к данным модель пространственной зависимости. Для расчета (прогноза) неизвестного значения переменной в заданном месте кригинг будет использовать подходящую (подобранную) модель вариограммы, конфигурацию пространственных данных и значения в точках измерений вокруг данного местоположения.