Главная
Новости
Строительство
Ремонт
Дизайн и интерьер

















Яндекс.Метрика





Нитрат свинца(II)

Нитрат свинца(II) (динитрат свинца) — неорганическое химическое соединение с химической формулой Pb (NO3)2. В обычном состоянии — бесцветные кристаллы или белый порошок. Токсичен, канцерогенен. Хорошо растворим в воде.

История

Исторически первое промышленное применение нитрата свинца (II) — это использование его в качестве сырья при производстве свинцовых пигментов, таких, как «хром желтый» (хромат свинца(II)), «хром оранжевый» (гидроксид-хромат свинца(II)) и аналогичных соединений свинца. Эти пигменты использовались для крашения текстильных изделий.

В 1597 немецкий алхимик Андреас Либавиус первым описал нитрат свинца, дав ему название plumb dulcis и calx plumb dulcis, что означает «сладкий свинец» из-за его вкуса.

Процесс производства был и остается химически простым — растворение свинца в aqua fortis (азотная кислота), а затем очистка осадка. Тем не менее, производство оставалось мелким на протяжении многих веков, а о промышленном производстве в качестве сырья для производства других соединений свинца не сообщалось до 1835. В XIX веке динитрат свинца стали производить на коммерческой основе в Европе и Соединенных Штатах.

В 1974 году в США потребление соединений свинца, за исключением пигментов и добавок в бензин, составляло 642 тонны.

Физические свойства

Нитрат свинца хорошо растворяется в воде (52,2 г/100 г воды) с поглощением тепла, плохо растворяется в этиловом и метиловом спиртах, ацетоне.

Кристаллическая структура динитрата свинца, плоскость [111]

Кристаллическая структура

Кристаллическая структура твердого динитрата свинца была определена с помощью нейтронной дифракции. Нитрат свинца образует бесцветные диамагнитные кристаллы, плотность 4,530 г/см³, кубическая сингония, пространственная группа Pa3, а = 0,784 нм, Z=4. Каждый атом свинца окружён двенадцатью атомами кислорода (длина связи 0,281 нм). Все длины N—O связей одинаковы — 0,127 нм.

Интерес исследователей к кристаллической структуре нитрата свинца был основан на предположении свободного вращения нитратных групп в кристаллической решетке при высоких температурах, но это не подтвердилось.

Кроме кубической разновидности нитрата свинца была получена моноклинная форма, которая плохо растворима в воде даже при нагревании.

Получение

Динитрат свинца не встречается в природе. Промышленные и лабораторные методы его получения сводятся к растворению в разбавленной азотной кислоте свинца, его оксида или гидроксида:

3 P b + 8 H N O 3 ⟶ 3 P b ( N O 3 ) 2 + 2 N O ↑ + 4 H 2 O {displaystyle {mathsf {3Pb+8HNO_{3}longrightarrow 3Pb(NO_{3})_{2}+2NOuparrow +4H_{2}O}}} P b O + 2 H N O 3 ⟶ P b ( N O 3 ) 2 + H 2 O {displaystyle {mathsf {PbO+2HNO_{3}longrightarrow Pb(NO_{3})_{2}+H_{2}O}}} P b ( O H ) 2 + 2 H N O 3 ⟶ P b ( N O 3 ) 2 + 2 H 2 O {displaystyle {mathsf {Pb(OH)_{2}+2HNO_{3}longrightarrow Pb(NO_{3})_{2}+2H_{2}O}}}

кислоту берут с избытком для подавления гидролиза и снижения растворимости нитрата свинца.

При очистке азотной кислотой отходов, содержащих свинец, например, при обработке свинцово-висмутных отходов на заводах, образуется динитрат свинца как побочный продукт. Эти соединения используются в процессе цианирования золота.

Химические свойства

Динитрат свинца хорошо растворяется в воде, давая бесцветный раствор. Растворимость сильно увеличивается при нагревании:

Водный раствор диссоциирует на катионы свинца и нитрат-анионы:

P b ( N O 3 ) 2 ⇄ P b 2 + + 2 N O 3 − {displaystyle {mathsf {Pb(NO_{3})_{2} ightleftarrows Pb^{2+}+2NO_{3}^{-}}}}

Раствор нитрата свинца(II) подвергается гидролизу и имеет слабокислую реакцию, которая имеет показатель рН от 3,0 до 4,0 для 20 % водного раствора. При избытке ионов NO3− в растворе образуются нитратокомплексы [Pb(NO3)3]−, [Pb(NO3)4]2− и [Pb(NO3)6]4−. При повышении pH раствора образуются гидроксонитраты переменного состава Pb(OH)x(NO3)y, некоторые из них выделены в твёрдом состоянии.

Так как только динитрат и ацетат свинца(II) являются растворимыми соединениями свинца, то все остальные соединения можно получить обменными реакциями:

P b ( N O 3 ) 2 + 2 H C l ⟶ P b C l 2 ↓ + 2 H N O 3 {displaystyle {mathsf {Pb(NO_{3})_{2}+2HCllongrightarrow PbCl_{2}downarrow +2HNO_{3}}}} P b ( N O 3 ) 2 + H 2 S O 4 ⟶ P b S O 4 ↓ + 2 H N O 3 {displaystyle {mathsf {Pb(NO_{3})_{2}+H_{2}SO_{4}longrightarrow PbSO_{4}downarrow +2HNO_{3}}}} P b ( N O 3 ) 2 + 2 N a O H ⟶ P b ( O H ) 2 ↓ + 2 N a N O 3 {displaystyle {mathsf {Pb(NO_{3})_{2}+2NaOHlongrightarrow Pb(OH)_{2}downarrow +2NaNO_{3}}}} P b ( N O 3 ) 2 + 2 N a N 3 ⟶ P b ( N 3 ) 2 ↓ + 2 N a N O 3 {displaystyle {mathsf {Pb(NO_{3})_{2}+2NaN_{3}longrightarrow Pb(N_{3})_{2}downarrow +2NaNO_{3}}}}

Любое соединение, содержащее катион свинца(II), будет реагировать с раствором, содержащим йодид-анион, с образованием осадка оранжево-жёлтого цвета (иодид свинца(II)). Из-за разительной перемены цвета эта реакция часто используется для демонстрации под названием золотой дождь:

P b 2 + + 2 I − ⟶ P b I 2 ↓ {displaystyle {mathsf {Pb^{2+}+2I^{-}longrightarrow PbI_{2}downarrow }}}

Аналогичная реакция обмена проходит и в твердой фазе. Например, при смешении бесцветных йодида калия и динитрата свинца, и сильного измельчения, например, перетиранием в ступке, происходит реакция:

P b ( N O 3 ) 2 + 2 K I ⟶ P b I 2 + 2 K N O 3 {displaystyle {mathsf {Pb(NO_{3})_{2}+2KIlongrightarrow PbI_{2}+2KNO_{3}}}}

Цвет полученной смеси будет зависеть от относительного количества использованных реагентов и степени измельчения.

При растворении нитрата свинца в пиридине или жидком аммиаке образуются продукты присоединения, например, Pb(NO3)2·4C5H5N и Pb(NO3)2·n NH3, где n=1, 3, 6.

Динитрат свинца является окислителем. В зависимости от типа реакции он может быть как Pb2+-ион, который имеет стандартный редокс-потенциал (E0) −0.125 V, или нитрат-ион, который в кислой среде имеет (E0) +0.956 V .

При нагревании кристаллов динитрата свинца они начинают разлагаться на оксид свинца(II), кислород и диоксид азота, процесс сопровождается характерным треском. Этот эффект называется декрепитация:

2 P b ( N O 3 ) 2 ⟶ 2 P b O + 4 N O 2 + O 2 {displaystyle {mathsf {2Pb(NO_{3})_{2}longrightarrow 2PbO+4NO_{2}+O_{2}}}}

Благодаря этому свойству нитрат свинца иногда используется в пиротехнике.

Применение

Динитрат свинца используется в качестве исходного сырья при производстве большинства других соединений свинца.

В связи с опасным характером данного соединения, в промышленной сфере отдается предпочтение в использовании альтернативных соединений. Практически полностью отказались от использования свинца в красках. Другие исторические применения данного вещества в спичках и фейерверках, также уменьшились или прекратились.

Динитрат свинца используется как ингибитор полимеров нейлона и других полиэфиров, в покрытиях фототермографической бумаги, а также в качестве зооцида.

В лабораторной практике динитрат свинца используется как удобный и надежный источник тетраоксида диазота.

Примерно с 2000 года нитрат свинца(II) начал использоваться при цианировании золота. Для улучшения выщелачивания в процессе цианирования золота добавляется динитрат свинца, при этом используется очень ограниченное его количество (от 10 до 100 мг динитрата свинца на килограмм золота).

В органической химии динитрат свинца был использован в качестве окислителя, например, в качестве альтернативы реакции Соммелета для окисления бензилов галогенидов до альдегидов. Он также нашёл применение для получения изотиоцианатов из дитиокарбаматов. Из-за своей токсичности он стал находить все меньшее применение, но по прежнему находит нерегулярное использование в SN1 реакции.

Меры предосторожности

Динитрат свинца токсичен и канцерогенен, является окислителем и классифицируется (как и все неорганические соединения свинца) вероятно канцерогенное вещество для человека (категория 2А) со стороны Международного агентства по изучению рака. Следовательно, он должен обрабатываться и храниться с соблюдением соответствующих мер предосторожности для того, чтобы предотвратить вдыхание, приём внутрь или контакт с кожей. Из-за опасного характера и ограниченного применения вещество должно находиться под постоянным контролем. ПДК = 0,01 мг/м³.

При приеме внутрь может привести к острому отравлению, так же как и другие растворимые соединения свинца.

Отравления приводят к раку почек и глиомы у подопытных животных и рака почек, рака мозга и рака легких у людей, хотя исследования работников, подвергающихся воздействию свинца, часто осложнялись одновременным воздействием мышьяка. Свинец известен как заменитель цинка в ряде ферментов, в том числе дегидратазы δ-аминолевулиновой кислоты (англ. δ-aminolevulinic acid dehydratase) в биосинтезе гема, который важен для правильного метаболизма ДНК, следовательно может вызывать ущерб плоду матери.